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Abstract. This work aims at a deep learning-based prediction of wall
shear stresses (WSS) for intracranial aneurysms. Based on real patient
cases, we created artificial surface models of bifurcation aneurysms. Af-
ter simulation and WSS extraction, these models were used for training
a deep neural network. The trained neural network for 3D mesh segmen-
tation was able to predict areas of high wall shear stress.

1 Introduction

Intracranial aneurysm growth and rupture is strongly associated with the blood
flow inside the aneurysm and its parent vessel. Assessment of individual rup-
ture risk can be supported by hemodynamic simulations [1]. These are time-
consuming and need expert knowledge. For the integration of wall shear stress
(WSS) information into clinical routine a deep learning method might be used.
In this work we explore how areas of high wall shear stress can be predicted
using deep learning on surface meshes.

Recently, Gharleghi et al. [2] presented deep learning WSS prediction for the
left main coronary artery bifurcation. They splitted the bifurcation into separate
vessels. For each part, a 2D representation with several geometrical parameters
was generated. Then, deep learning was applied to the 2D representation. Their
results had an average mean absolute error of 0.0407 Pa.

Based on 4000 artificially created abdominal aortic aneurysms, Jordanski
et al. [3] compared several machine learning approaches to model the relation-
ship between geometric parameters and WSS distribution. The best results were
achieved by Gaussian conditional random fields. In this study we generated ar-
tificial intracranial aneurysms and performed deep learning mesh segmentation
to predict areas of high WSS.
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Table 1. Parameters of real world aneurysms that were characterised by a roundly
shaped saccular aneurysm at vessel bifurcation. Provided are min, max and average
values (in degree respectively mm) for the parameters described in Fig. 1

Ty 1 T2 Tq d « B
average 2.53 1.87 1.75 2.09 3.67 97.31 93.77
min 1.81 0.96 1.04 1.11 1.65 64.00 60.00
max 3.38 2.48 2.58 3.44 6.15 157.00 120.00

2 Materials and methods

For this study we chose a simplified configuration consisting of a bifurcation
aneurysm with one inlet and two outlets of the parent artery. Based on the
results of hemodynamic simulations, regions of high WSS were segmented and
serve as ground truth.

2.1 Artificial aneurysm configuration

The simplified, artificial bifurcation aneurysms were created with CAD software.
Each geometry consists of three cylinders, representing one inlet vessel and two
outlets and a sphere for the saccular bifurcation aneurysm. The aneurysm cre-
ation has seven adjustable parameters (see Fig. 1): the radius of the inlet (r;),
the radius of the first outlet (rq), the radius of the second outlet (rz), the radius
of the aneurysm (r,), the distance between aneurysm center and bifurcation (d),
the angle between the first outlet and the inlet (&), and the angle between the
second outlet and the inlet (). In order to extract realistic default values for
these parameters, we analyzed 200 patient-specific 3D aneurysm models from our
previous work. We then selected cases which have a high agreement w.r.t. our
artificial configuration (i.e. spherical, saccular bifurcation aneurysm) yielding 13
reference cases. Their average, minimum and maximum values are shown in Ta-
ble 1. The artificial aneurysms were created with randomly generated parameters
in the same range of the values of the reference aneurysms.

2.2 Hemodynamic simulations

Hemodynamic simulations were performed in order to assess the WSS of the
artificial aneurysm geometries. These simulations are based on computational
fluid dynamics, which is a numerical approach to solve fluid flow problems using
Navier-Stokes equations. For this purpose, each flow domain, containing vessels
and aneurysm, was spatially discretized into volumetric cells (1.2 to 2.4 million
cells for each configuration depending on the domain size). Blood was modeled as
incompressible and laminar fluid with a density of 1055 kg/m?® and dynamic vis-
cosity of 0.004 Pas. Boundary conditions of the domain were modeled as follows:
Constant velocity of 0.3m/s as inflow into the parent artery, rigid vessel walls
with no-slip condition, and zero-pressure assumption at the outlets. The total
simulation time was 5s (quasi-steady, time step of 0.01s) while only the time
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range of [3-5] s was used for temporal averaging the WSS field. In total, 145 artifi-
cial aneurysms were simulated with STAR-CCM+ 13.06 (Siemens PLM Software
Inc., Plano, TX, USA). Finally, aneurysm surface and temporal averaged WSS
magnitude values were exported for further analysis.

2.3 Deep learning segmentation

The aneurysm surfaces are remeshed using the ACVD algorithm [4] to obtain a
similar number of edges. The deep learning approach requires label per edge while
the WSS magnitude values from the flow simulation were obtained at vertices.
Thus, we calculate the edge labels as average WSS of the associated vertices.
Areas of high WSS are defined based on a reference value.This reference value
is obtained by listing the maximum WSS of each aneurysm and calculating the
median of it. Areas, where the WSS is larger than 0.4 times the reference value,
are defined as areas of high WSS. An example is shown in Figure 2.

We trained a deep learning mesh segmentation using the medMeshCNN ar-
chitecture [5]. For the first experiment, we used a small dataset consisting of 24
training meshes and 3 test meshes. The second experiment included 123 training
and 10 test meshes. Due to problems in feature calculation, the last experiment
comprised 118 training and 9 test meshes.

Instead of transforming the mesh information to 2D, we directly work with 3D
surface meshes. Deep learning segmentation is used to predict areas of high WSS.
Further experiments included variation of the edge features used.medMeshCNN
calculates angles and ratio between edges of adjacent faces. In experiments 3,4
and 5 we added curvature [6] and in experiment 5 mesh thickness [7] (defined as
diameter of the maximum inscribed sphere) to the feature calculation. Both fea-
tures were first calculated for each vertex and than mapped to the corresponding
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Fig.1. Overview of parameters for artificial aneurysm creation; a) example of refer-
ence aneurysm with measure of aneurysm diameter; b) concept of artificial aneurysm
creation with seven parameters.
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Table 2. Parameters of the experiments, where # denotes the experiment number, GC
the Gaussian curvature and M C the mean Gaussian curvature.

. additional pooling batch weighted
# training test ” .
features resolution size loss
15 3 - 2500 2000 1500 1000 750 10 0.20.8
123 10 - 2500 2000 1500 1000 750 10 0.20.8
123 10 GC 2500 2000 1500 1000 750 10 0.20.8

123 10 GC & MC 2500 2000 1500 1000 750 500 5 0.01 0.99
118 9 GC & thickness 2500 2000 1500 1000 750 500 5 0.01 0.99

Tl = W N

edges. In the following, selected experiments are presented. The parameters of
each experiment are summarised in Table 2.

3 Results

The training accuracy of the first experiment was constantly increasing and
approaching 100 %. This proved that the medMeshCNN architecture is able to
learn the presented mesh attributes. However, the test accuracy was far worse
(between 61 and 68 %) and decreasing after 50 epochs.

Increasing the number of training meshes did improve the test accuracy, as
shown by the second experiment (see Fig. 3). Again, overfitting occurred and
the test accuracy decreased after epoch 40. In Figure 4, the result for one of the
test meshes is shown. The corresponding simulation result and ground truth are
shown in Figure 2. While an accuracy over 85 % is reached, the visual inspection
shows some differences. Only a small part of the large WSS area is predicted by
the net. But additional spots on the wall are falsely predicted.

For the third experiment the Gaussian curvature was included in the feature
list. As visible in Figure 3, this leads to a test accuracy of over 91 %. Unfor-
tunately, this accuracy was reached by labelling most edges as normal WSS,
omitting the high WSS class.

)
= (==

Fig. 2. Depiction of the resulting WSS (left) and a corresponding ground truth segmen-
tation for training (right).
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To overcome the problem of the vanishing high WSS class, the weights of
the loss function were adjusted. Experiment 4 additionally included the mean
Gaussian curvature as a feature. Thus, an accuracy of 85% was reached (compare
Fig. 3). Figure 4 shows the prediction of the net. Compared to experiment 2,
there are less but larger predicted high WSS areas. The net from experiment 4
predicts a larger area as high WSS than the ground truth segmentation for the
deep learning shows. Compared with the original simulation result, both areas
of high WSS are segmented by the net. The high WSS in the lager vessel is not
completely segmented.

In experiment 5, additional to the curvature features, the mesh thickness was
included. This did not improve the results. The test accuracy stayed below 80%
and WSS areas were scattered over the whole mesh (see Fig. 4).

Prediction of high WSS areas with the trained net needed 43 seconds on
average per mesh.

4 Discussion

Areas of high WSS can be predicted by deep learning mesh segmentation meth-
ods. In all presented experiments, the training accuracy converged to 100%.
While high training accuracy was reached, the test accuracy showed limita-
tions. A major limitation is the used dataset. As seen in the first two experiments,
increasing the number of training examples does improve the test accuracy. We
used artificially created intracranial aneurysms. These shared the same basic
geometry, a bifurcation aneurysm with proximal parent and two distal outflow
vessels. medMeshCNN is able to learn the geometry based on meshes and mesh
features. While the geometries of the meshes are similar, the variance in the
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Fig.3. Training (left) and test (right) accuracy per epoch of experiment 2 (without
additional features; red), experiment 3 (GC; green), experiment 4 (GC&MC; blue).
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Fig. 4. Result of experiment 2 (left), 4 (middle) and 5 (right).
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segmentation is higher. This might hinder the training and complicate general-
ization. Including the curvature and adjusting the weights of the loss function
does improve the results.

Another factor which needs further research is the choice of suitable thresh-
olds for generation of the segmentation ground truth data. In experiment 4,
a larger high WSS area around the junction was predicted than shown in the
ground truth. A modified threshold value (lower reference value) might result
in a better agreement between ground truth segmentation, deep learning high
WSS prediction and simulation results.

In the presented work, only two WSS classes were segmented. Further re-
search should include several classes to produce more detailed WSS predictions.
Increasing the number of classes also requires careful adjustment of the training
parameters, especially the weights for the loss function.

While finding suitable parameters for the net is a challenging and time-
consuming task, the prediction of WSS with deep learning is considerably faster
than traditional hemodynamic simulation and does not require expert knowl-
edge.

In conclusion, we analyzed the potential of deep learning mesh segmentation
for the fast prediction of WSS in intracranial bifurcation aneurysms. This ap-
proach provides fast results, which could be included into clinical routine. The
quality of the results depends on several parameters. A weighted loss function
with focus on the high WSS areas and the inclusion of the mesh curvature im-
proved the prediction results.

References

1. Berg P, Vo3 S, Janiga G, et al. Multiple Aneurysms AnaTomy CHallenge 2018
(MATCH)—phase II: rupture risk assessment. Int J Comput Assist Radiol Surg.
2019 05;14.

2. Gharleghi R, Samarasinghe G, Sowmya A, et al. Deep Learning for Time Averaged
Wall Shear Stress Prediction in Left Main Coronary Bifurcations. In: 2020 IEEE
17th International Symposium on Biomedical Imaging (ISBI); 2020. p. 1-4.

3. Jordanski M, Radovic M, Milosevic Z, et al. Machine Learning Approach for Pre-
dicting Wall Shear Distribution for Abdominal Aortic Aneurysm and Carotid Bifur-
cation Models. IEEE Journal of Biomedical and Health Informatics. 2016 12;PP:1-1.

4. Valette S, Chassery JM, Prost R. Generic Remeshing of 3D Triangular Meshes with
Metric-Dependent Discrete Voronoi Diagrams. IEEE Trans Vis Comput Graph.
2008 03;14:369-381.

5. Schneider L, Niemann A, Beuing O, et al.. MedMeshCNN — Enabling MeshCNN for
Medical Surface Models; 2020.

6. Cohen-Steiner D, Morvan JM. Restricted Delaunay Triangulations and Normal
Cycle; 2003. p. 312-321.

7. Inui M, Umezu N, Shimane R. Shrinking sphere: A parallel algorithm for com-
puting the thickness of 3D objects. Computer-Aided Design and Applications.
2016;13(2):199-207.



