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Abstract. Metal implants that are inserted into the patient’s body dur-
ing trauma interventions cause heavy artifacts in 3D X-ray acquisitions.
Metal Artifact Reduction (MAR) methods, whose first step is always a
segmentation of the present metal objects, try to remove these artifacts.
Thereby, the segmentation is a crucial task which has strong influence
on the MAR’s outcome. This study proposes and evaluates a learning-
based patch-wise segmentation network and a newly proposed Consis-
tency Check as post-processing step. The combination of the learned
segmentation and Consistency Check reaches a high segmentation per-
formance with an average IoU score of 0.924 on the test set. Further-
more, the Consistency Check proves the ability to significantly reduce
false positive segmentations whilst simultaneously ensuring consistent
segmentations.

1 Introduction

Trauma interventions regularly require an intraoperative evaluation of the cor-
rect positioning of inserted metallic implants. This oftentimes not only includes
a 2D- but also a 3D-X-ray scan performed by a mobile C-arm. Due to heavy
image artifacts caused by the inserted implants the surgeon is in need of a well
functioning metal artifact reduction method (MAR). Thereby, the overall ability
of the particular MAR method to reduce the artifacts heavily depends on the
quality of the so-called metal segmentation [1]. Experiments show that missed
metal parts in the segmentation lead to still present streak artifacts in the recon-
structions even after the MAR, whereas falsely segmented anatomical structures
lead to a blurred or even vanished representation. Such segmentation can be
done in the 2D projections as well as in the corresponding 3D reconstructed vol-
ume. Whereas classic MAR methods like normalized and frequency split metal
artifact reduction method (NMAR,FSMAR) [2,3] use advanced threshold-based
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metal segmentation methods in 3D, recent segmentation methods has shown the
high potential of deep learning based models like e.g. shown by Ronneberger et
al. [4]. Despite these advancements, recent MAR methods oftentimes still use
thresholding methods in 3D for metal segmentation in the volume [5,6] although
this method has clear disadvantages. Firstly, the present artifacts in the 3D vol-
ume (caused by the metal itself) strongly aggravates the segmentation task and
makes a clean thresholding difficult and secondly, metal which lies outside the
field of view (FOV) of the reconstructed volume can not be segmented at all.
Thus, the unsegmented metal parts will not be processed by the MAR and con-
sequently still cause heavy artifacts in the volume. In contrast, segmentation
methods on the 2D projection images have the possibility to find all present
metal and thus should be preferred.

In order to tackle the mentioned problems, we investigate the difference in
performance of 2D projection-based networks, the first using a patch-wise seg-
mentation which is trained and tested for two patch-sizes and using a sliding
window with stitching and the second performing segmentation on the complete
projection image at once. Furthermore, a segmentation Consistency Check (CC)
is introduced as a post processing step, which robustly removes falsely segmented
structures, whilst ensuring consistent segmentation masks.

2 Materials and methods

2.1 Network architectures

Due to the proven performance of the U-Net architecture in segmenting medical
images [4], the proposed networks are inspired by it. Thereby, the non-patched
architecture version which has an input image size of 976x976 pixels, consists of
seven contracting blocks and seven expanding blocks with skip-connections in
between. Starting with 8 feature maps in its first layer, the network has 1024
feature maps at its bottleneck, each with a size of 8x8 pixels. The expanding
path of the network is designed that it expands the processed image to its initial
size. In accordance with that, its patch-based counterpart has input image sizes
of 128x128 and 256x256 pixels and the same-/doubled-sized bottleneck. Thus, it
consists of only 4 contracting and 4 expanding blocks.

2.2 Data

To train the networks, we acquired suitable X-ray projection images by perform-
ing two consecutive 3D short-scans, the first with and the second without metal
implants. These scans were collected during two cadaver studies of human knees,
using a Siemens Cios Spin system and following an acquisition protocol similar to
[7]. During both studies, in total 32 corresponding 3D scans were acquired, each
consisting of 400 projection images, covering a variety of metal implants, that
were placed on the skin or directly on and inside the bone. The corresponding
ground truth (GT) labels for the metal segmentation task can be generated by
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subtraction. Thus, we are able to train our networks using real acquired X-ray
projections which should provide a good generalization to clinical knee data. The
data set was split into 22 3D scans for training, 8 for testing and 2 for validation.

2.3 Experiment protocol

As a preprocessing step, the acquired RAW data was converted into line integral
data. This was done by using Lambert-Beer Law [8], where the measured inten-
sities were normalized with the initially emitted intensity and then the logarithm
was applied. Both networks were trained from scratch using the same data split,
the same cross-entropy based loss function, a decaying learning rate (start: 1e=°)
and an online augmentation scheme with randomized left-right flips, rotations,
contrast and brightness scaling and different amount of added Poisson noise to
mimic varying image acquisition qualities. For training of the patch-based seg-
mentation networks, a randomized cropping with sizes of 128 or 256, resp. is
added to the online augmentation scheme. All networks were trained until con-
vergence. In cases of patch-wise segmentation, a sliding window (step size 32 or
64 resp.) with stitching was implemented, where the values of the overlapping
windows are summed up in order to segment the complete projection.

2.4 Consistency check

By exploiting the underlying consistency conditions of 3D reconstructions, we
propose a segmentation Consistency Check which is able to reduce false positive
segmentations and simultaneously accounts for consistency of the mask among
the stack of segmentations and which consists of three steps. The first step is
a back-projection of the complete stack of binarized segmentation masks into a
3D volume. In contrast to the initial diagnostic volume which has in our case
5123 voxels (voxel size of 0.31 mm), the size of this volume is chosen larger and
in a way that the reconstruction of the binarized masks includes all metal parts
present. This leads to a volume size of 9203 voxels with again a voxel size of
0.31 mm. Due to the fact that we back-project binary masks, each voxel of the
corresponding volume can be understood as a “visitor counter” which provides
information about how many of the 2D metal masks actually contributed to each
specific voxel. By normalizing each voxel value with the maximal amount of pos-
sible “visitors”, we account for the reduced amount of rays outside the FOV of
the volume. Consequently, the voxel values lie in the range of 0 and 1, where a
voxel with a value of 0 corresponds to no contribution and a voxel with a value
of 1 corresponds to a contribution from all 2D metal masks. Thus, each voxel
value provides information about how consistently the corresponding metal part
was segmented across the projections. Consequently, applying a threshold of e.g.
0.95 in order to create a binary 3D metal mask in the reconstruction, is equiv-
alent to only including the parts into the 3D mask that were segmented in at
least 95% of the projections. Thus, by performing the final forward projection, a
stack of 2D metal masks that only include consistently segmented parts, is pro-
vided. Consequently, the inconsistent false positive segmentations are removed.
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Table 1. Results for the AUC of the three different segmentation networks.The results
are calculated over the complete test data set.

Patch Size Avg. Min Max

No patching  0.967 0.952 0.990
256x256 0.972 0.960 0.984
128x128 0.983  0.973 0.994

Thereby, the classification into consistent or inconsistent parts is defined by the
chosen threshold.

3 Results

By having a look at Tab. 1, it can be observed that all three networks perform on
a high level. Whereas the patch-based segmentation using the patch-size of 128
results in the largest AUC, the increased patch-size of 256 results in a slightly
decreased AUC. Using the network segmenting on the complete projection, gen-
erates the lowest AUC.

In Tab. 2 the results for the combination of three different thresholds (5, 30,
55) for the binarization of the patch-wise network’s output with and without the
proposed CC are illustrated. It can be seen that using the thresholds 30 and 55
for binarization without CC result in overall high metric scores, whereas using
a threshold of 5 results in significant lower scores for all metrics, expect the avg.
recall. The shown images b) to d) of Fig. 1 support the quantitative results.
It can be seen that the mask in image b) contains a higher amount of falsely
segmented structures. However, especially at the bottom edge, the metal implant
is still segmented, whereas those parts are missing in images ¢) and d). Having
a look at the configurations applying the proposed CC, it can be observed that
the evaluation metrics are significantly increased when being combined with the
lowest threshold of 5. This combination reaches the highest avg. IoU and Dice
score among all tested configurations (cf. Tab. 2). Whereas the scores marginally
increase for the threshold 30 with CC, decreasing scores can be investigated for

Thres. CC Avg. IoU Avg. Dice Avg. Precision Avg. Recall
5 no 0.783+0.107 0.855+0.095 0.598+0.200 0.99540.023
5 yes 0.92440.032 0.959+0.024 0.873+0.039 0.9751+0.038
30 no 0.9134+0.034 0.952+0.026 0.850+0.052 0.9784+0.041
30 yes 0.91740.042 0.954+0.029 0.9174+0.031 0.908+0.073
55 no 0.91340.040 0.952+0.029 0.89510.042 0.9251+0.076
55 yes 0.83240.084 0.954+0.060 0.95440.027 0.707+0.171

Table 2. Average results of the 128 patch-sized network for IoU, Dice Score, Precision
and Recall for different thresholds for mask binarization in combination with or without
the proposed CC.
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threshold 55 with CC. The observed effects are also visible in images f) to h) in
Fig. 1.

4 Discussion

By investigating the AUC values for the three evaluated network setups, it be-
comes clear that all setups perform on a high level with mean AUC values of
almost reaching 1. Having a closer look shows that patching in general seems
to be beneficial and that a reduction of the patch-size further increases the per-
formance. However, in future work, the influence of more patch-sizes should be
investigated. Based on these results the subsequent tests of the proposed CC
were evaluated using the best-performing network with a patch size of 128.
When neglecting the CC at first, it can be investigated that using thresh-
olds 30 and 55 result in an supposedly high performance with respect to the
quantitative results (cf. Tab. 2), whereas using the threshold 5 leads to a poor
performance. This effect is due to the high amount of falsely segmented structures
as can be seen in Fig. 1 image b). However, despite the high metric scores and
rather convenient looking mask for threshold 30 and 55, neither the quantitative
nor the qualitative evaluation provide distinct information about how consistent
the respective segmentations are. Due to the fact that consistency among the
complete stack of segmented masks of a 3D scan is crucial for the quality of the
corresponding reconstruction, this information is important. Inconsistencies in
the segmented metal masks will lead to streaking artifacts in the volume. Hav-
ing a look at the results after applying the proposed CC, it can be observed
that the performance of the threshold 5 is significantly boosted with respect
to the quantitative results, whereas the performance of the threshold 30 only

Fig. 1. a) and e) show the 2D projection and GT mask, whereas b),c) and d) correspond
to the binary result masks for the thresholds 5, 30 and 55 using the 128 patch-sized
network. Images f) to h) show the masks after being processed by the proposed CC.
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marginally increases and the performance for the threshold of 55 even decreases.
The distinct increase for the threshold of 5 can be explained by the complete re-
moval of false positive segmentations. The same holds for threshold 30. However,
a more interesting result can be drawn from image h) in Fig. 1. Applying the
CC reveals and simultaneously fixes the problem that the initial segmentation
using a threshold of 55 was inconsistent which results in removed metal parts.
Despite the correspondingly decreased segmentation metrics, we are confident
that the newly reached consistency within the mask will result in less artifacts
in the corresponding volume. However this hypothesis needs to be further in-
vestigated. Concluding the discussion about the proposed Consistency Check, it
can be stated that CC is able to remove falsely positive segmented structures
whilst simultaneously enforcing consistency of the segmentation. Both should be
beneficial for subsequent MAR methods. Based on the fact that the proposed
patch-wise segmentation networks were trained using real X-ray scans, we are
confident that the method generalizes well to clinical cases. Nonetheless, this
should be further investigated in future work.
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