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Abstract. Deformable image registration of images with large defor-
mations is still a challenging task. Currently available deep learning
methods exceed classical non-learning-based methods primarily in terms
of lower computational time. However, these convolutional networks face
difficulties when applied to scans with large deformations. We present
a semantically guided registration network with deep pyramid feature
learning that enables large deformations by transferring features from
the images to be registered to the registration networks. Both network
parts have U-Net architectures. The networks are trained end-to-end and
evaluated with two datasets, both containing contrast enhanced liver CT
images and ground truth liver segmentations. We compared our method
against one classical and two deep learning methods. Our experimental
validation shows that our proposed method enables large deformation
and achieves the highest Dice score and the smallest surface distance of
the liver in constrast to other deep learning methods.

1 Introduction

Medical imaging techniques are important for diagnosis and treatment planning.
In order to be able to ensure a detailed analysis of the structures to be examined,
different images with complementary information are acquired and the informa-
tion of these images have to be combined in order to be able to make a valid
decision. One important example is the registration of contrast enhanced liver
CT images. The organs in the abdomen are, due to their soft tissue structures,
flexible and can be deformed by the (respiratory) movement of the patient, which
makes a mapping of the liver and vascular systems necessary, e.g., to plan a liver
surgery.

To address this issue, most classical image registration algorithms iteratively
optimise a similarity metric in order to spatially align images, which leads to
long computation times [1].
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Convolutional neural networks overcome the drawback of a long processing
time since the iterative optimization takes place during training and not during
inference [2,3]. Most of the currently available approaches show a good perfor-
mance on regions with small deformations, e.g. brain images, but have difficulties
registering images with large deformations.

The aim of this work is to overcome the drawback using learning-based net-
works and enable large deformations. Since it is rather difficult to create ground
truth data for a registration, most methods are unsupervised. One example is
VoxelMorph that was introduced by Balakrishnan et al. in 2018 [2]. It is based
on the intensity values in the image and can use mutual information as simi-
larity metric to maximize the image correspondence. Besides approaches that
learn in an unsupervised manner, there are also methods that use other expert
information as guidance. Ha et al. in 2020 [3] focus on the 2D registration of
segmentations as regions of interest and combine a U-Net segmentation and a
registration network that are jointly optimized. In 2D optical flow learning, the
concept of feature pyramids proposed in the PWC-Net has led to huge advances
[4]. Our work combines and extends the ideas of Sun et al. and Ha et al. First,
we adapted the networks to enable 3D registrations. Additionally, we overcome
the drawback of the registration network, which outputs a coarse deformation
field. Instead we use a U-Net architecture that additionally has a decoder path
and outputs a larger deformation field. To further guide the registration, we
transfer the information of each resolution of the decoder path of the seman-
tic network to the corresponding resolution of the encoder path of registration
network with skip connections.

2 Material and Method

A general overview of our proposed method is shown in Fig. 1. Our method
consists of two parts: a feature extraction and a registration part. The first part
extracts the semantic features by generating a liver segmentation of the fixed
and the moving image with two U-Nets that have shared weights. The defor-
mation field is estimated in the second part by two registration networks that
have U-Net architecture, hence an encoder and a decoder path. The input of the
first registration network are the concatenated outputs of the fixed and moving
feature extraction networks. In the downsampling path, the feature maps of the
feature extraction networks are concatenated to the corresponding resolution.
The output of the first registration network is an initial deformation field. The
input of the second registration network are the outputs of the feature extraction
networks that are warped with the initial deformation field. The feature maps of
the upsampling path of the feature extraction network are also warped with the
initial deformation field and are concatenated to the corresponding resolution
level in the encoder path. The resulting deformation field of the second registra-
tion network is added to the initial deformation field. This sequential generation
of the final deformation field enables us to align large deformations.
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2.1 Semantic Feature Extraction

To extract semantic features in the images to be registered, two U-Nets with
shared weights are used to generate liver probabilities of the fixed and the moving
image. The U-Net contains three downsampling steps with convolutions with
a kernel size of 3 × 3 × 3, stride of 2 and a padding of 1, followed by 3D
instance normalization and leaky ReLU with a slope of 0.1. The decoder part is
structured parallel to the encoder part but contains only two upsampling steps.
Additionally, the network contains skip connections from the encoder path to
the decoder path. The output corresponds to the halved resolution of the input
images. The semantic loss is a weighted cross-entropy with weights computed
by the square root of the inverse class frequency for each label.

2.2 Registration Networks

The deformation field is estimated by two registration networks with the same ar-
chitecture. It comprises three downsampling and upsampling steps. In contrast,

Fig. 1. Pipeline of semantically guided registration. The feature extraction part con-
sists of two U-Nets with shared weights that extract the features of the moving and
the fixed image. These features are transferred to the second part, the registration,
which consists of two U-Nets connected in series. The first U-Net creates an initial de-
formation field, which is finalized by the second U-Net. All added elements (compared
to the original architecture) are marked orange.
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the original approach consists of four downsampling steps without upsampling.
The downsampling steps contain convolutions with a kernel size of 3 × 3 × 3,
stride of 2 and padding of 1, followed by 3D batch normalization and leaky ReLU
with a parameter of 0.1. The decoder part is structured parallel to the encoder
part. The deformation and regularization loss is calculated as described in [3].

2.3 Image Data

To train, validate and test our approach, and to compare it to other registration
techniques, two contrast enhanced liver CT datasets are used.

The first dataset consists of 170 images: 85 images of the venous phase and 85
images of the late-venous phase. For all of these images, ground truth labels of
the liver are available. The data has been manually segmented and reviewed by
three experienced radiologic technicians. The CT scans and the corresponding
segmentations are resampled to a voxel size of 0.9 × 0.9 × 1.3 mm3 and an
initial affine registration is applied. Around the center of the segmented liver,
the image is cropped to 304 × 240 × 144 voxels and zero padded if necessary.
The segmentations of the liver of the corresponding phases are processed in the
same way. 43 images of each of the two phases are assigned to the training data
set, 42 image of each phase to the test data set.

The second dataset is a publicly available dataset from the Learn2Reg MIC-
CAI Registration Challenge 20201 that consists of 30 abdominal CT scans of
different patients of the portal venous phase. The dataset includes ground seg-
mentations of 13 organs, in particular also of the liver. In contrast to the first
dataset, the initial average liver Dice score is much lower so that even larger
deformations are required. The images are already preprocessed to the same
voxelsize of 2.0 × 2.0 × 2.0 mm3, a spatial dimension of 192 × 160 × 256 voxels
and affine registered. For the following experiments only the liver segmentation
is taken into account. 20 images are included in the training process, while 10
are used as test dataset.

3 Results

All networks are trained across patients to ensure a sufficient number of image
pairs and obtain a good generalization. During training, two random images are
chosen as fixed and moving images so that the choice of phases is randomized. We
have performed an ablation study for the proposed pipeline. First, we adapted
the original approach of Ha et al. [3] to a 3D approach and trained it with the
two datasets. The resulting deformation field is of the size 9 × 7 × 4 voxels for
our dataset and 6 × 5 × 8 for the Learn2Reg dataset. The deformation field
is upsampled to the cropped image size. The networks are trained end-to-end
with an Adam optimizer with a learning rate of 0.01. A number of 300 epochs
is carried out for the datasets.

1 https://learn2reg.grand-challenge.org/Datasets/ Task 3
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Table 1. Results of deformable registration with our test dataset (upper part) and
the Learn2Reg test dataset (lower part). Average Dice Scores, mean of the Average
Surface Distance (ASD), 95% Hausdorff Distance (HD95), lowest 30% of the Dice coef-
ficients (Dice30), standard deviation of the Jacobian determinant, and the percentage
of negative elements of the Jacobian are presented.

Method Dice ASD HD95 Dice30 JacStd JacDet < 0

Affine 0.71 ± 0.12 11.74 ± 5.68 34.79 ± 17.56 0.58 ± 0.09 - -

deeds 0.82 ± 0.11 7.73 ± 5.54 29.23 ± 20.44 0.70 ± 0.08 0.42 0.0

VoxelMorph 0.74 ± 0.11 10.56 ± 5.42 33.20 ± 17.25 0.63 ± 0.09 0.36 0.15

Ha et al. 0.87 ± 0.11 4.61 ± 2.02 16.24 ± 9.77 0.83 ± 0.04 0.77 4.62

Ours 0.90 ± 0.03 4.07 ± 2.30 15.76 ± 10.75 0.87 ± 0.02 1.55 6.22

Ours+Skip 0.91 ± 0.03 3.90 ± 2.06 15.36 ± 10.21 0.87 ± 0.02 1.30 6.12

Affine 0.62 ± 0.10 15.39 ± 4.60 49.27 ± 13.21 0.51 ± 0.06 - -

deeds 0.83 ± 0.06 7.72 ± 4.03 35.54 ± 17.45 0.77 ± 0.06 0.49 3.78

VoxelMorph 0.68 ± 0.08 12.88 ± 3.99 45.04 ± 12.85 0.59 ± 0.05 0.35 0.38

Ha et al. 0.72 ± 0.07 10.86 ± 3.46 35.73 ± 11.77 0.65 ± 0.04 0.25 0.19

Ours 0.77 ± 0.08 9.16 ± 3.80 33.22 ± 14.61 0.67 ± 0.04 0.46 2.01

Ours+Skip 0.79 ± 0.07 8.56 ± 3.48 31.78 ± 13.80 0.71 ± 0.04 0.46 1.75

Next, we adapted the registration networks, whereas the learning parameters
remain as in the first experiment. First, the decoding path is added. Addition-
ally, the number of downsampling steps is reduced to three. The downsampling
path therefore results in a larger feature map of dimension 19 × 15 × 9 for our
dataset and 12× 10× 16 for the Learn2Reg dataset. The final deformation field
has the size of the input feature map. Second, further skip connections are in-
troduced to additionally guide the registration network with semantic features
as shown in Fig. 1.

Fig. 2. Exemplary registration results. The images show corresponding slices of the 3D
volumes (top: our dataset, bottom: Learn2Reg dataset) with the liver segmentation as
red overlay. From left to right: fixed image, moving image, deeds, VoxelMorph, Ours.
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In addition, we compared our method to the classical registration algorithm
deeds [1] and the deep learning registration approach VoxelMorph [2]. We
adapted VoxelMorph from an atlas-based registration to an image to image reg-
istration and trained it with our image data. The mutual information loss is
weighted with λ = 2.0. Due to the limited GPU memory, 20 is chosen as the
number of intensity bins and a total number of 100 epochs is trained.

We used the average Dice score and the lowest 30% of the liver segmentations
as metric for evaluation. Additionally, the average surface distance, the 95%
Hausdorff distance, the standard deviation of the Jacobian determinant and the
percentage of negative elements of the Jacobian are used as evaluation metrics.

The results for all methods for both datasets are listed in Table 1. An
example slice of both networks for all methods are displayed in Fig. 2. Deeds
took on average six times longer than the deep learning approaches, with all
deep learning approaches taking less than 10 seconds.

4 Discussion and Conclusion

Considering inter-patient registration of the first dataset, our semantically guided
registration network outperforms the remaining approaches with Dice score of
0.91 and an average surface distance of 3.90 which corresponds to an improve-
ment of at least +4% and -0.71 voxels, respectively.

In case of the second dataset, our semantically guided registration network
also outperforms the other deep learning-based methods by at least +7% for
the Dice score and -2.3 voxels for the average surface distance. However, the
classical method deeds is the best method for this dataset and has a higher Dice
score (+4%) and a smaller surface distance (-0.84 voxels) than our method.

The different results for the two datasets can be explained trough the small
number of training images for the second dataset. In general, learning-based
methods are strongly dependent of the amount and quality of the dataset which
leads to a good generalization of the model.

Overall, our presented approach can overcome the problems of most deep
learning-based methods that have difficulties to register large deformations.
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