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Abstract. Osteoporosis occurs when the body loses too much bone mass,
and the bones become brittle and fragile. In the aging society of Europe,
the number of people with osteoporosis is continuously growing. The
disease not only severely impairs the life quality of the patients, but
also causes a great burden to the healthcare system. To investigate on
the disease mechanism and metabolism of the bones, X-Ray microscopy
scans of the mouse tibia are taken. As a fundamental step, the micro-
structures, such as the lacunae and vessels of the bones, need to be
segmented and analyzed. With the recent advances in the deep learning
technologies, segmentation networks with good performance have been
proposed. However, these supervised deep nets are not directly applicable
for the segmentation of these micro-structures, since manual annotations
are not feasible due to the enormous data size. In this work, we propose
a pipeline to model the mouse bone micro-structures. Our workflow in-
tegrates conventional algorithms with 3-D modeling using Blender, and
focuses on the anatomical micro-structures rather than the intensity dis-
tributions of the mouse bone scans. It provides the basis towards gener-
ating simulated mouse bone X-Ray microscopy images, which could be
used as the ground truth for training segmentation neural networks.

1 Introduction

Osteoporosis means “porous bone”, and is a systemic skeletal disorder. Under
a microscope, a bone looks like a honeycomb, where healthy bones have small
holes, and osteoporotic bones have large ones. The loss of bone mass weakens
the bones and makes bones prone to breaking. Osteoporosis is the most common
reason for bone fractures among the elderly [1]. From the macroscopic aspects,
osteoporosis can be caused by hormone change, various diseases or medication
treatments [2]. From the microscopic aspects, all osteoporosis cases are caused
by an imbalanced bone resorption and formation process. Two types of cells
are involved in this procedure: when the speed of bone matrix degeneration by
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osteoclasts is faster than the regeneration by osteoblasts, bone mass loss and
osteoporosis occurs. In the aging European society, osteoporosis is causing both
pain to the patients and financial burden to the health care system [1].

To investigate on the metabolism and disease mechanism of bones, the mouse
tibia which resemble human bones are utilized as the experimental targets. In
one experiment protocol, the sample mouse bones are processed and scanned
with the X-Ray Microscope (XRM) [3] to achieve huge data volumes with the
resolution up to 0.7×0.7×0.7µm3. Inside the bone mass, the lacunae where the
osteoclasts and the osteoblasts dwell, and vessels which provide for the cells, are
of our interest. Segmentation and further statistical analysis of the lacunae and
vessels from the bones in the XRM data are crucial steps towards understanding
the micro-structures and metabolism of the bones. With the recent advances
of the deep learning technology, various successful segmentation networks have
been proposed. However, supervised nets require labeled training data, which is
unfeasible to obtain via manually annotation for our task.

In this work, we propose a pipeline to generate binary models of the mouse
bone XRM data with the help of Blender [4]. The Blender is an open-source com-
puter graphics software which can be used for 3-D modeling. Twelve mouse bone
XRM datasets are provided to support the simulation procedure. Our pipeline
consists of four main steps. Firstly, the shape of the bone is simulated using
a combination of classical algorithms. Secondly, irregularly shaped bone cracks
created using the Blender are indented onto the outer surface of the bone mass.
Thirdly, the lacunae inside the bone mass are simulated by seeding several manu-
ally created primitives in random locations. Fourthly, the vessels inside the bone
mass are simulated by placing manually modeled vessel primitives using a set of
rules. The proposed pipeline is straight-forward and can grasp the characteristics
of the bone micro-structures. The generated bone models make the fundamental
step to simulate training data for supervised deep learning-based methods.

2 Materials and Methods

2.1 Database

A database composed of 12 X-Ray Microscopy (XRM) scans of the mouse tibia is
provided. These scans are acquired on a Xradia Versa 520 XRM system. Among
them, 6 bone segments are from healthy mice, and the other 6 are from osteo-
porosis mice. Each mouse tibia has the length of around 2 cm in real, while the
XRM volume has the shape of 1980× 2024× 1999 pixels with the isotropic res-
olution of 1.34µm3. The raw data is stored in 16 bit unsigned format, and each
volume has the size of around 2 GB.

The XRM scans are used as the modeling targets for the simulation process.
In this work we focus on the shape simulation of the mouse bone, thus the high
resolution and intensity ranges of the scans are not demanded. To save memory
and computation cost, a preprocessing pipeline is applied. Firstly, a Volume Of
Interest (VOI) from each scan is extracted by a medical scientist to remove
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both ends of the tibia which are not of interest and are often corrupted due
to the cone beam artefacts. Secondly, the VOI is binarized using the Otsu’s [5]
threshold. Thirdly, the binarized VOI is automatically cropped into stacks of
shape 1000×1000×200 pixels. Note that the center of each stack is the weighing
center of each bone segment, and we assume that the centerline of the bone
segment is parallel to the z-axis within the 200 slices.

(a) (b)

Fig. 1. 2-D x-y slice from a healthy mouse XRM scan in (a), enlarged ROI in (b).

2.2 Simulation for Data Augmentation

In this work, we aim to generate bone shape models with the size of 1000 ×
1000× 200 pixels. The simulation of the bone model is composed of four steps,
namely bone shape modeling, bone crack indentation, lacunae simulation and
vessel simulation. A combination of classical algorithms are used for bone mass
simulation, while the Blender [4] is utilized for the bone crack, lacunae and vessel
simulation process.

Bone Shape Simulation To obtain binary masks of the bone shape, the Gradient
Vector Flow (GVF) [6] method is applied to obtain an anisotropically diffused
gradient vector field such that the gradient vectors of the edge map can reach into
non-informative homogeneous regions. Then the active contour model [6], which
is also regarded as the Snakes algorithm is employed to extract the inner and
the outer bone shape descriptors. Finally the Statistical Shape Model (SSM) [7]
is trained to generate diversed new shapes.

The GVF method aims for an anisotropically diffused gradient vector field
v = [u(x, y), v(x, y)] of the edge map Of by minimizing the energy function:

E =

∫ ∫
µ(u2x + u2y + v2x + v2y) + |Of |2|v − Of |2dxdy. (1)

Minimization of (u2x + u2y + v2x + v2y), requires the vector v to vary slowly; while
minimization of |Of |2|v−Of | enforces the resulting field to resemble the gradient
of the edge field, especially in regions with high edge responses.
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The Snakes algorithm is employed to locate the points on the inner and outer
contours of each 2-D slice of the mouse bone. A snake is a flexible 2-D discrete
line c, and evolves towards the contours along the gradient directions in the GVF
field by minimizing the following energy function:

E(c) = Einternal(c) + Eexternal(c) (2)

Einternal(c) =
∑

α
∥∥∥c′∥∥∥2 + β

∥∥∥c′′∥∥∥2 (3)

Eexternal(c) =
∑
−‖v(c)‖2 . (4)

The internal energy term Einternal is the weighted summation of the magnitudes
of the first and second derivatives of the snake curve c, where α, β are the weigh-
ing factors. It controls the length and the curvature of the curve c. The external
energy term Eexternal is the negative summation of the GVF field gradient mag-
nitudes at the snake points. Minimization of Einternal constrains that the snake
curve is short and smooth; minimization of Eexternal pushes the snake points
towards the contours where the GVF field has the maximum values.

The Snakes algorithm keeps the order and the number of the initialized
snake points, thus generates ideal inputs to train the SSM. On each 2-D x-y
slice, 1 332 and 400 snake points are utilized to characterize the outer and inner
contours respectively. In other words, each bone segment shape is represented as
a (1 332 + 400)× 200× 3 = 1 039 200 dimensional shape descriptor xi. The mean
vector x of these descriptors is computed and the shape matrix D is constructed:

x =
1

N

N∑
i=1

xi (5)

D = (x1 − x, ...,xN − x). (6)

Singular Value Decomposition (SVD) is then applied on the matrix D to obtain
the eigenvectors φ and eigenvalues λ, which are then utilized to create models
with new shapes:

x = x + b · φ (7)

where b is the multiplicative factor with each element ranging from −2
√
λi to

2
√
λi.

Bone Crack Simulation Due to the preparing procedure of the tibia sample, the
outer surface of the mouse bones often has cracks as shown in Fig. 1. Here we
create indentations onto the outer surface of the bone mass with the help of
Blender. Firstly, primitives for the cracks are created manually in Blender as
presented in Fig. 2. The primitive templates are designed to be irregular and
asymmetric such that the indented cracks are as diversed as possible. Secondly,
20 seeding points on the outer contour of the bone mass are randomly selected.
Thirdly, for each position, a random primitive is chosen, rescaled and rotated
within a certain range. Then augmented primitive is used as a structuring ele-
ment to erode the bone mass.
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(a) (b) (c) (d) (e)

Fig. 2. Bone crack simulation. Crack templates rendered in Paraview [8].

Lacunae Simulation In bone XRM scans, lacunae are represented as dark cav-
ities that can be approximated using balls, ellipses, or combinations of them.
Four particle primitives are designed in Blender, as presented in Fig. 3. In each
generated bone mass segment, around 150 k center point positions are selected
according to prior anatomical knowledge. For each centering point, a lacuna
primitive is chosen and augmented with random rotation and scaling.

(a) (b) (c) (d)

Fig. 3. Lacunae simulation. Lacunae templates rendered in Paraview [8].

Blood Vessel Simulation The blood vessels in the XRM stacks are modeled as
tree branches with the Sapling Tree Gen plugin of Blender. In a 200-slice stack,
the vessels have at most one bifurcation. Thus the sapling primitives are designed
to have simple structures as shown in Fig. 4. We also contrain that two vessels
are at least (100, 100, 20) pixels apart from each other, and should be roughly
aligned, deviating i. e. maximum ±30◦ from the direction of the bone axial. In
a healthy bone segment sample, the number of unconnected vessels ranges from
three to eight.

(a) (b) (c) (d) (e) (f)

Fig. 4. Blood vessel simulation. Vessel templated rendered in Paraview.

3 Results

The inner and outer contour surfaces of the bone shapes simulated with different
settings of the multiplicative factor b in Eq. 7 are rendered in Paraview [8], as
shown in Fig. 5(a). The eigen contour surfaces when b = 0 are highlighted in red
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color. A patch from a 2-D slice of the simulation result is presented in Fig. 5(b),
and the 3-D render of the color-coded lacunae and vessels is shown in Fig. 5(c).

(a) (b) (c)

Fig. 5. Simulated bone contours in (a), an example patch from a 2-D slice of a simulation
result in (b), red lacunae and green vessels in (c). (a) rendered in Paraview [8].

4 Discussion

In this work, we propose a pipeline to model the mouse tibia segments and the
micro-structures inside. We use the statistical shape model to generate bones of
different shapes, and employ Blender to simulate the bone cracks, the lacunae
and the vessels. Comparing the 2-D x-y slice of the simulation result in Fig. 5(b)
and that of the the real XRM data in Fig. 1, a close similarity is observed.
The proposed pipeline provides an approach to generate unlimited amount of
binarized bone XRM masks, which make the fundamental step towards training
data simulation for segmentation networks. In the future, domain adaptation
approaches could be applied to train network models with the simulated data;
more complicated primitives could be designed to model osteoporosis bones.
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