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Robust slide cartography in colon cancer histology

Evaluation on a multi-scanner database
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Abstract. Robustness against variations in color and resolution of dig-
itized whole-slide images (WSIs) is an essential requirement for any
computer-aided analysis in digital pathology. One common approach to
encounter a lack of heterogeneity in the training data is data augmen-
tation. We investigate the impact of different augmentation techniques
for whole-slide cartography in colon cancer histology using a newly cre-
ated multi-scanner database of 39 slides each digitized with six differ-
ent scanners. A state of the art convolutional neural network (CNN) is
trained to differentiate seven tissue classes. Applying a model trained
on one scanner to WSIs acquired with a different scanner results in a
significant decrease in classification accuracy. Our results show that the
impact of resolution variations is less than of color variations: the accu-
racy of the baseline model trained without any augmentation at all is
73% for WSIs with similar color but different resolution against 35% for
WSIs with similar resolution but color deviations. The grayscale model
shows comparatively robust results and evades the problem of color vari-
ation. A combination of multiple color augmentations methods lead to a
significant overall improvement (between 33 and 54 percentage points).
Moreover, fine-tuning a pre-trained network using a small amount of
annotated data from new scanners benefits the performance for these
particular scanners, but this effect does not generalize to other unseen
scanners.

1 Introduction

Histopathology involves the microscopic examination of tissue sections. The sec-
tions undergo various preparation steps before analysis: fixation, embedding,
sectioning, staining and digitization [1]. Each step introduces some form of vari-
ation into the resulting whole-slide image. A trained pathologist can cope with
these variances; however, a human analysis is prone to subjectivity and inter-
observer variance. Computational pathology aims to support pathologists in their
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decision-making process by automating in a very objective and validated fashion
the calculation of scores or extraction of parameters hidden to the human eye.
Deep learning approaches achieve very good results in many applications [2].
However, training robust models for the analysis of histopathological slides is
still a challenge. The algorithm’s accuracy suffers from the high variability en-
countered in slides in the field [2]. Sources of heterogeneity are different assays,
unstandardized preparation protocols, different characteristics of the scanner
components - most relevantly it’s camera and microscope objective – and finally
color post-processing steps. There are two main approaches to counter the prob-
lem of variances in WSIs: (i) normalization of images during runtime and (ii)
representing the variance already in the training database.

The first approach aims to provide a standardized input to the classifier
by adjusting the slide’s color and scale to match the properties of the refer-
ence slides the network was trained on. Earlier solutions rely on a normalization
based on color deconvolution of the underlying staining components [3]. The
disadvantage of these solutions is that they frequently produce unrealistic color
alterations and are not robust against severe stain variations. More recent tech-
niques use machine learning algorithms to improve the normalization quality
by taking into account morphological properties in addition to the color [1,4].
Two prominently employed network architectures for transferring the reference
slides’ style are sparse auto-encoders or generative adversarial networks (GANs)
[5]. These methods produce more reliable results, however, they are computa-
tionally expensive and prone to false color estimations in unseen regions.

The second approach requires a sufficiently heterogeneous multi-centric data-
set. When this is not available, a viable workaround is to introduce variance syn-
thetically using domain-specific data augmentation. Native image patches can
be duplicated and altered in terms of their geometry and color with the goal
of increasing the network’s capability to generalize to unseen data. Geometric
transformations leave the color information intact and modify only morpho-
logical information. Patches can be rotated, flipped, scaled or images can be
artificially blurred to simulate out-of-focus scans. Color augmentations, on the
other hand, include variations of the color’s hue, saturation, gamma, etc. This
can help to mimic different stain protocols or color alterations of WSI scanners.
A color augmentation tool specific to the domain of histopathology is a stain
variation [6], where the hematoxylin and eosin components are separated us-
ing a color deconvolution in order to vary their color properties independently.
Training and evaluating classifiers on slides that stem from one and the same
laboratory and scanner can result in overly optimistic accuracy estimations. On
the contrary, evaluating on a multi-centric dataset frequently shows poor perfor-
mance [7]. Telez et al. compared for different applications the performance gain
from stain normalization and stain augmentation and conclude that the latter
is more beneficial [2].

Previous research has largely focused on the variance introduced by variations
in the staining protocol. In this work, we investigate the effects of variations that
stem from the use of different slide-scanners.
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Table 1. WSI resolution, size of test database and number of patches.

Scanner Resolution in number of number of patches

µm per pixel test patches for fine-tuning

3DHISTECH MIDI 0.22 1,381,316 40,230

Fraunhofer iSTIX 0.17 2,123,364 49,005

Fraunhofer SCube 0.27 857,511 38,528

PreciPoint M8 0.35 514,397 35,524

Hamamatsu Nanozoomer S210 0.22 1,424,716 -

Hamamatsu Nanozoomer S360 0.23 1,298,056 -

2 Materials and Methods

2.1 Materials

The dataset used for the baseline cartography network comprises 161 hema-
toxylin and eosin (HE) stained colon sections from the Institute of Pathology
at the University Hospital Erlangen. First, all samples were digitized with a
3DHISTECH MIDI scanner (20x magnification, 0.22 µm per pixel) and anno-
tated manually by accurately outlining the contours of seven different tissue
classes: tumor, necrosis, inflammation, connective combined with adipose tissue,
muscle tissue, mucosa and mucus. Based on the annotated WSIs, labelled non-
overlapping patches of pixel size 224x224 are generated. Patches that do not
intersect with a manual annotation or contain no or only little foreground are
discarded. The number of patches per class and slide is limited to 10,000 (using
random sampling) in order to limit the overall dataset size while ensuring that
information from all available slides is used. The training database comprises
2,173,515 patches from 92 slides. The validation set contains 719,010 patches
from a disjoint set of 30 slides. These two datasets were used to train the CNN,
while the remaining 39 glass slides were additionally digitized with four other
automated scanners and with a manual microscope using the real-time stitching
software iSTIX. The resolution as well as the color varies significantly between
the different scanners (see Tab. 1 and Fig. 1).

For each slide, the annotations are transferred from the original scan to the
new scans by co-aligning the WSIs. The main steps for the registration are the ad-
justment of resolution, calculation of features, brute-force-matching of the slides’
feature points and finally the estimation of a global transformation (translation
and rotation). Afterwards, for each scanner a test database with labelled patches
(224x224) from 30 slides is generated without limiting the number of patches per
class/slide. Due to the different resolution and background detection, the amount
of image patches varies among the scanner datasets. A set of nine slides is ex-
cluded from these datasets and reserved for additional fine-tuning experiments
for three scanners (M8, SCube, iSTIX). Moreover, tiles from the original scanner
are included in a mixed database for fine-tuning comprising 163,287 patches.
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2.2 Methods

CNNs are a common choice to solve image classification tasks. One popular
CNN architecture is Xception, which was introduced by Chollet [8]. Its main
characteristics are a depthwise separable convolution with residual connections.
We slightly adapted the architecture by introducing two dropout layers between
the fully connected layers at the top and replacing the logistic regression with
softmax. Moreover, our input image size is 224x224 (instead of 299x299) in order
to obtain more image patches that lie entirely within the bounds of the manual
annotations. All experiments were carried out using the TensorFlow framework
(version 2.2). For training, cross entropy loss and Adam optimizer with a learning
rate of 0.001 and an exponential decay was applied. Image patches are zero-
centered and the batches are generated with respect to class labels ensuring that
each class is equally represented on average in a batch. Class imbalances are
compensated by oversampling of underrepresented classes. A dropout rate of 0.5
was chosen.

First, a baseline experiment is carried out, where no data augmentation is
employed. Afterwards several data augmentation techniques are applied during
training and the robustness of the resulting model is evaluated on our six per-
scanner test databases. Based on the observation that the slides vary mainly
in color and in scale, we focus on color transformations and zoom variations.
For each augmentation type, a probability and a valid parameter range is de-
fined. We investigate variations of saturation, hue and contrast and apply gamma
correction to the image patches. Additionally, the hematoxylin and eosin com-
ponents are separated [6] and manipulated independently (HE augmentation).
All experiments that employ data augmentation start with the weights of the
baseline training. Moreover, we investigate the robustness of a model trained
only on grayscale image tiles. Finally, we combine the most promising data aug-
mentation types in a single run in order to evaluate if their individually observed
benefits add up. In addition, the impact of fine-tuning with a small number of

Fig. 1. Digitized slide scanned with MIDI, M8, iSTIX (upper row, from left to right),
S210, S360, SCube (lower row, from left to right).
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scanner-specific images is evaluated for three of the scanners individually and in
combination (see Tab. 1).

3 Results

Results obtained on the scanner-specific test sets are listed in Tab. 2. The baseline
and grayscale models are trained without any data augmentation. Starting point
for the fine-tuning is the model trained on the MIDI scanner with HE and gamma
augmentation.

Table 2. Classification accuracies (number of true positive classifications divided by the
total number of classified patches) for different models on each scanner test set.

Classification accuracy on

Model 3DHISTECH PreciPoint Fraunhofer Hamamatsu

MIDI M8 iSTIX SCube S210 S360

Baseline 0.939 0.394 0.290 0.731 0.354 0.361

Grayscale 0.908 0.849 0.680 0.885 0.864 0.882

HE + Gamma 0.925 0.696 0.432 0.884 0.663 0.727

Hue + Sat + HE 0.918 0.891 0.621 0.896 0.880 0.901

Hue + Sat + Bright + Cont 0.933 0.894 0.493 0.858 0.863 0.917

M8 fine-tuning 0.610 0.939 0.519 0.759 0.668 0.780

iSTIX fine-tuning 0.566 0.642 0.821 0.614 0.576 0.533

SCube fine-tuning 0.894 0.592 0.386 0.936 0.489 0.536

Mixed fine-tuning 0.902 0.917 0.852 0.904 0.778 0.799

Zoom 0.931 0.418 0.310 0.750 0.343 0.344

Gamma 0.921 0.398 0.370 0.848 0.305 0.331

HE 0.932 0.679 0.401 0.831 0.637 0.680

Hue 0.927 0.861 0.410 0.852 0.821 0.896

Saturation 0.934 0.452 0.365 0.856 0.422 0.459

Brightness 0.918 0.494 0.371 0.815 0.372 0.397

Contrast 0.927 0.455 0.336 0.796 0.368 0.380

4 Discussion

A baseline experiment confirms earlier observations that a trained CNN shows
poor performance on unseen data from another scanner. In our experiments,
the influence of changes in resolution is less critical than the deviation in color:
the accuracy of the baseline model on SCube scans (73%), which are similar in
color but have a different resolution, is significantly higher than that on Hama-
matsu scans (35%), which share the same resolution with the original MIDI
scans. The highest impact on the results is gained by employing the HE and hue
augmentations. On the contrary, zoom augmentation yields only little benefit.
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Surprisingly, the grayscale model shows comparatively robust results and evades
the problem of color variation - the highest burden for robust models. A com-
bination of multiple methods (hue, saturation and HE augmentations) lead to
a significant overall improvement. By fine-tuning the model using a small set of
patches from the newly targeted scanner, the overall accuracy could be raised to
a level close to that obtained on the native dataset for all new scanners except
iSTIX. A likely explanation is that the manual scanning concept inherently suf-
fers from stronger variances and the overall quality is inferior to that of high-end
automated scanners (more out-of-focus areas, stitching artefacts).

Fine-tuning the network with additional patches from four scanner datasets
(“mixed”) yields a solid performance on all scanners. However, this model does
not generalize as well as the model trained on a data augmented (hue, satura-
tion and HE color augmentation together) database and shows worse results on
the unseen Hamamatsu datasets: 78-80% against of 88-90%. In future work we
will focus on extending the augmentation range and developing an automated
approach for increasing the robustness of a pre-trained CNN.
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