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Abstract. Examining specific sub-cellular structures while minimizing
cell perturbation is important in the life sciences. Fluorescence labeling
and imaging is widely used for introducing specificity despite its pertur-
bative and photo-toxic nature. With the advancement of deep learning,
digital staining routines for label-free analysis have emerged as a re-
placement for fluorescence imaging. Nonetheless, digital staining of sub-
cellular structures such as mitochondria is sub-optimal. This is because
the models designed for computer vision are directly applied instead of
optimizing them for the nature of microscopy data. We propose a new
loss function with multiple thresholding steps to promote more effec-
tive learning for microscopy data. Through this, we demonstrate a deep
learning approach to translate the label-free brightfield images of living
cells into equivalent fluorescence images of mitochondria with an average
structural similarity of 0.77, thus surpassing the state-of-the-art of 0.7
with L1. Our results provide insightful examples of some unique opportu-
nities generated by data-driven deep-learning enabled image translations.

1 Introduction

The study of function and structure of nanoscale sub-cellular organelles such
as mitochondria is considered vital for understanding sub-cellular mechanisms
of various diseases [1]. Its small size can fall below the diffraction limit [2] and
poses a considerable challenge. However, mitochondria specific live-cell friendly
fluorescent dyes [3] and high resolution fluorescence microscopes have enabled to
image them in high contrast [4]. Nonetheless, there are trade-offs involved with
the use of fluorescent dyes. Such dyes are chemical additions to the living cell
system. They perturb the natural function and sometimes even damages the cells
[5]. Furthermore, the phenomenon of photo-bleaching limits the photon-budget
and long-term imaging. Finally, there are practical aspects such as imperfect
labeling and expensive fluorescence microscopy instrumentation [6]. Therefore,
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Fig. 1. Proposed method for label-free to digitally labeled image translation.
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it is of high interest to explore label-free microscopy solutions such as brightfield
differential interference and phase-contrast microscopy which use the inherent
optical contrast of the sub-cellular structures in the image formation [7]. Unfor-
tunately, the images obtained by these modalities encode the entire cell content,
which makes the data difficult to interpret for studies concentrating on only a
small portion of the sub-cellular content [8].

This study introduces a deep learning based approach for digital staining of
mitochondria in label-free brightfield microscopy images of living cells. It involves
the implementation of the conditional generative adversarial network (cGAN) [9]
to transfer the unstained embryonic heart-derived cell-line to their corresponding
mitochondria stained images, such as shown in Fig. 1. The highlight of the pre-
sented work is a novel loss function, custom-designed for learning the structures
of interest while deprioritizing the learning for the remaining structures.

2 Materials and methods

Here, we present the data and deep learning approach used in this paper.

Data acquisition: The rat cardiomyoblast cell-line H9c2 (cells derived from
embryonic heart tissue; Sigma Aldrich) was cultured in DMEM with 10% FBS
on MatTek glass-bottom dishes. The cells were transiently transfected 24 — 48
hours to express the mitochondrial fluorescence marker e GFP-OMP25-TM. Dur-
ing acquisition, the cells were kept at 37°C, 5% CO2, atmospheric oxygen, and
a cell-culture medium (DMEM with 10% FBS). Time-lapse microscopy data
were acquired using a DeltaVision OMX V4 Blaze imaging system (GE Health-
care Life Sciences, Marlborough, MA, USA) equipped with a 60X 1.42NA oil-
immersion objective (Olympus) and sCMOS cameras. A total of five cells were
imaged. Images were acquired by shifting the focal plane along the z-axis and
repeating the acquisition of aligned pairs of brightfield and fluorescence images
as separate channels using 2s as the temporal rate of revisiting the same plane.
Each image is of size 1024 x 1024 pixels, where each pixel is of size 80 nm. For
ensuring a good correlative imaging set-up, the images of the two modes were
recorded using two different cameras with inbuilt pre-calibration for registra-
tion. Images of five cells were used for the approach. Each aligned image pair
was randomly cropped into 25 smaller patches (256 x 256 pixels). The patches
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Fig. 2. An overview of the pipeline to train a Deep Neural Network.
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with mitochondrial region less than 20% were discarded, obtaining a total of
8480 correlated pairs of images, which were then proportionally split into 70-20-
10% training, validation, and test sets. We had 5,936 correlated image pairs for
training and 848 correlated pairs of images for testing through this exercise.

c¢GAN architecture: The learning of non-linear mapping from label-free mi-
croscopy images to standard fluorescent stained image pair is accomplished using
c¢GAN [9], which is an extension of the generative adversarial network (GAN).
The model comprises of subsequent learning of a Generator network (G) and a
Discriminator network (D), as shown in Fig. 2 using U-Net [10] as the backbone.
G is an encoder-decoder network assigned to generate labeled images from the
passed real brightfield image, inferring the probability distribution generating
the data. The generator loss function computes the loss by comparing the gen-
erated image with the corresponding ground truth real fluorescence image. This
generated image is then passed to the discriminator network with a compara-
tively more straightforward task of learning the rules to distinguish between the
images generated by the generator network and the ground truth real of fluores-
cence images. The discriminator loss function seeks to maximize the probability
of how realistic the generated image looks against the input target pair. This
follows a zero-sum game of adversarial learning of the G-D network. When both
function’s losses attain a Nash equilibrium, we expect that the generator can
generate close-to-reality digitally labeled images. Pix2pix [11] is used in this
work, a variant of aligned image-to-image translation using cGAN. The primary
motivation for choosing this model is the flexibility and adaptability to a wide
variety of tasks without explicitly defining the relationship. The model learns
the explicit density function describing the probability distribution.

Training details: The networks for all the combinations were trained from
scratch for 200 epochs, and results were compared using Adam optimizer. Image
rescaling was avoided to preserve the image spatial context. ReLiu activation was
employed and no dropouts were included.

3 Proposed loss function

The design or adoption of an optimal generator loss function is critical for the
model’s performance and often a challenging endeavor. MinMax and L1 norm
based loss function are some conventional loss functions successfully used for low-
noise medical images [12]. Sub-cellular fluorescence microscopy has a dominance
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Fig. 3. Illustration of the proposed T-N based loss function.
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of noisy and empty background due to the nature of fluorescence. This results in
the conventional loss functions prioritizing learning on the noisy background and
sub-optimally learning the foreground pixels which are few in relative numbers.
For example, Fig. 3(A) shows an actual fluorescence image, (B) is a digital can-
didate image generated by the generator, (C) the 3D rendering of pixel-by-pixel
L1 loss shows that the sum of loss in background pixels can be higher compared
to the foreground object due to large fraction of noisy background. If the gener-
ator minimizes the L1 loss, learning of the noisy background is prioritized. We
propose to use a weighted loss function, in which the weight matrix shown in (D)
when multiplied with the L1 loss (C) allows to make the net loss more sensitive
to the foreground, as shown in (E). The details of the proposed weighted L1 loss
appear in the following paragraph.

We propose using a custom multiple thresholding-normalized (TN) loss func-
tion [13] that effectively mitigates the problem mentioned above. The proposed
loss aims to reduce the contribution (and not completely neglect it) of the noisy
background to the loss estimation as compared to the foreground. Since the TN-
based loss is not strictly zero in the background, learning of the low-intensity
features such as out-of-focus light is still incorporated, only with lesser priority.
We compute the weight matrix based on the three-sigma rule to a normal curve
that can be derived from Chebyshev’s inequality for a wide class of probability
distributions. For a normal distribution with mean p and standard deviation o,
the rule states that p £ o contains ~ 66.7% of the image measurements, p + 20
covers 95% measurements and p + 30 covers 99.7% of the image measurements.
The image is subsequently divided into three parts based on p and ¢ and shifts
the normalization to 0-20%, 20-70% and 70-100%, respectively. The eq. 1 below
describes the computation of the weight matrix using the target image F'

3 m
- F(I‘i, yz) - Mn—l
Iweight = Z Z (an M, — M, + b, (1)
1

n=1i=m, _

where mg = 0, My = min(F), m; = My = p+o0, me = M3 = p+ 30, mg = 255,
M3 = max(F). Further, heuristically chosen coefficients a1 = 0.2,b; = 0, ay =
0.5,b2 = 0.2, and a3 = 0.3,b3 = 0.7.

In order to choose the loss function for the discriminator network, we per-
formed a comparative study of a variety of discriminator loss functions consider-
ing two options for the generator loss function: the conventional L1 loss and the
TN weighted L1 loss (see Table 1). We found that mean square error loss and fo-
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Table 1. Study of loss functions for the discriminator network in terms of SSIM.

Generator Dice + BCE Jaccard Focal loss Mean square error
L1 0.3292 0.3921 0.4058 0.4292
TN-weighted L1 0.5212 0.5877 0.6521 0.6874

cal loss provided a better convergence for both options of the generator loss. MSE
loss providing the best result compared to other experimented losses was consid-
ered for the discriminator. This pixel-wise loss function emphasis the difference
between the foreground and background statistical pixel data for learning.

4 Results

Structural similarity index (SSIM) and peak signal-to-noise ratio (PSNR) were
used for performance evaluation. We performed a comparative study for three
set-ups, namely T-N(1), T-N(16), and L1, where T-N(x) represents the proposed
loss function with batch size x. L1 represents the L1 based vanilla loss function
used in state-of-the-art mitochondria labeling [14]. Quantitative results and rep-
resentative examples are shown in Fig. 4. We consistently observed that the
proposed method provides better SSIM than the state-of-the-art, with median
SSIM of 0.77 (TN) being significantly better than the state-of-the-art (0.7 of L1).
PSNR shows a similar trend, although not as prominently as SSIM. In terms of
computation time, the digital staining takes 34 milliseconds per image of size
256 x 256 on average, using a standard desktop computer equipped with a single
GPU. Even with a relatively moderate computer, the fast inference time suggests
that the proposed digital staining can be easily integrated with an automated
microscope.

Label-free Ground

TN(1 T-N (16]
Imaging truth U (19) L1

SSIM Metric Q95
Q95 Q75 Q50 Q25
T-N(1) 081 0.79 0.77 0.71
T-N(16) 0.80 0.78 0.76 0.72 . Q75
L1 0.77 0.72 070 0.67
PSNR Metric .
T-N 295 284 276 26.6 Q50
T-N(16) 29.1 283 275 264
L1 28.7 284 275 273 .
Q25

Fig. 4. Quartile comparision of different learning methods.
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5 Discussion and Conclusion

This paper presents a method for artificially labelling mitochondria from a label-
free brightfield microscopy image. The proposed TN loss function integrated with
the adversarial network approach performs significantly better than the state-
of-the-art. We envision this method to save researchers time, labor and costs,
and enable better studies of cells without photo-toxicity, photo-bleaching, and
perturbation of the natural cell composition. Since the method is data-driven, it
does not need prior information regarding the experimental settings such as the
camera, precise microscopy modality or the dyes used during experimentation.
The model’s precision can likely be further enhanced by training the network
on a larger dataset with a higher number and variety of cells. We note that the
presented digital staining approach can, in a straight forward manner, also be
combined with other microscopy modalities by following a similar approach.
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