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Abstract. Generative shape models are crucial for many medical image
analysis tasks. In previous studies, it has been shown that conventional
methods like PCA-based statistical shape models (SSMs) and their ex-
tensions are thought to be robust in terms of generalization ability but
have rather poor specificity. On the contrary, deep learning approaches
like autoencoders, require large training set sizes, but are comparably
specific. In this work, we comprehensively compare different classical and
deep learning-based generative shape modeling approaches and demon-
strate their limitations and advantages. Experiments on a publicly avail-
able 2D chest X-ray data set show that the deep learning methods achieve
better specificity and similar generalization abilities for large training set
sizes. Furthermore, an extensive analysis of the different methods, gives
an insight on their latent space representations.

1 Introduction

The study of anatomical shapes is a fundamental process in medical image anal-
ysis. Generative shape modeling methods seek to capture as much information
as possible to estimate the shape distribution of a population. Typically, a train-
ing set of shapes is used to train a model that is able to reproduce the training
shapes and to generate new but similar shape instances. Applications of these
models range from segmentation and registration, over data augmentation, to
the detection and classification of diseases in medical images. A classical example
of such generative models are PCA-based statistical shape models (SSMs) intro-
duced by Cootes et al. in the early 1990s [1]. Since then, numerous extensions
and modifications of these models have been proposed to alleviate problems and
limitations regarding the linear nature of this approach [2], the need for 1-to-1
correspondences [3], or reduce the amount of training data required [4,5]. More
recently, the research focus has shifted towards deep learning-based generative
modeling using approaches like autoencoders (AEs), variational autoencoders
(VAESs), or generative adversarial networks (GANs). Although these approaches
overcome major limitations of SSMs, they require even larger training data sets
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and their black-box nature makes them harder to interpret. Nevertheless, deep
learning methods are successful, especially for the generation of synthetic images
[6]. However, in the medical field training data is limited and only a few studies
have examined the properties of generative models for this specific situation [7].
In a previous study [8], two conventional and two deep learning-based gen-
erative approaches for multi-organ shape modeling were compared. That study
showed that approaches based on deep learning consistently show better results
in terms of generalizability and specificity than classical PCA-based SSMs. Yet,
it has been shown that extensions of classical SSMs [5] perform on par with and
even outperform deep learning- based approaches in terms of generalizability,
especially for smaller training sets. Moreover, deep learning approaches tend to
model small or rare structures incorrectly when only few samples are available.
In this work, we extend [8] by (1) including other popular generative models,
(2) investigating solutions for the incorrect generation of small structures in
(V)AEs, and (3) examining the properties of the latent spaces of the models.

2 Materials and Methods

2.1 Material

The generative shape models discussed in this paper use a publicly available
2D chest radiograph database [9]. We refrain from using 3D data here to avoid
typical computational problems that would require special solutions for the deep
learning approaches. The dataset contains 247 images with segmentations of five
structures (left and right lung, left and right clavicle, and the heart). Segmenta-
tions are given as a set of 166 corresponding landmarks (input for the SSMs) and
as binarized label images (input for the deep learning approaches; see Fig. 1).
We use the same fixed 123/124 images test/training split as in [9] to allow for a
direct comparison of the results.

2.2 Statistical Shape Models and Locality-based Multi-resolution SSMs

Statistical Shape Models (SSMs) use vectorized representations of landmark
points that represent the shape of the object, typically the object contours.
Principal Component Analysis (PCA) of a training set is used to create an

Fig. 1. Example shapes as contours (left) for the SSMs; and labels (right) for the CNNs.
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orthonormal basis for projecting shape representations into a low-dimensional
latent space or to reconstruct new shapes from latent representations [1]. In
classical SSMs, the number of training samples influences the flexibility of the
model, since the size of the latent space is limited by the size of the training set.
Locality-based multi-resolution SSMs (LSSMs) [5] introduce additional flexibility
by breaking global relationships and assuming that local shape variations have
limited effects in distant areas. This idea can be integrated into the traditional
SSM framework by manipulating covariances based on the distance between
landmarks in a multi-resolution manner. LSSMs have been shown to perform on
par or outperform other approaches like wavelet-based SSMs or Gaussian process
models in terms of generalization and specificity [5,10].

2.3 Autoencoders and Variational Autoencoders

Autoencoders (AFEs) are neural networks consisting of an encoder Q(X) that
maps input data X to a low-dimensional latent vector z, and a decoder P(z) that
attempts to reconstruct the input data X given z. This is typically achieved by
optimizing a reconstruction objective, s.t. X = P(Q(X)). Thus, unseen shapes
can be reconstructed by forwarding them through a trained encoder and decoder.
To generate new shapes, a random z can be sampled and propagated through a
trained decoder [8].

However, AEs may simply learn an identity function and because of the
unknown latent distribution, sampling a random z can cause the generation of
implausible shapes. Those problems are addressed by wvariational autoencoders
(VAEs), by restricting the latent space to a normal distribution. In practice, this
is achieved by an additional Kullback-Leibler loss of the latent space [11].

2.4 Generative Adversarial Networks

Generative adversarial networks (GANs) can analogously be used as generative
models. However, due to their adversarial training scheme, they are known to
enable the generation of exceptionally realistic images. GANs learn to map a
random noise vector z to an output image Xjy.r. using a generator function
G :z = Xjgake [6]. To ensure that the generator produces realistic images, an
adversarial discriminator D is used during training, aiming at perfectly distin-
guishing real images and generated fake data.

2.5 Deformable Autoencoders

AEs or VAEs often fail to reconstruct or generate small-sized structures, es-
pecially when trained on small datasets [8]. Deformable autoencoders (DAE)
are an extension of VAEs that tackle this problem by representing shapes as
the deformed version of a learned template image [12]. Rather than directly re-
constructing the input, the DAE decoder generates a displacement field ¢ and
implicitly learns a template 7', which is deformed to match the input X s.t.
T o P(z) = X. To ensure smooth displacement fields, a diffusion regularisation
term is used as an additional penalty during model training.
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3 Experiments and Results

In this work, we focus on analyzing differences between the approaches presented
in Sec. 2 with respect to specificity and generalization and also investigate the
structure of each model’s latent space. The experimental setup follows [8].

Specificity and Generalization: In this experiment, all methods are compared
in terms of generalization and specificity for different training set sizes, where
specificity describes the model’s ability to generate new realistic samples and
generalization denotes the ability to reconstruct unseen samples. As in [8], train-
ing set sizes ranging from 5 to 113 are used for a 5-fold-cross-validation. Average
symmetric surface/contour distances (ASSD) are utilized to quantify the results.

The results for all methods are shown in Fig. 2. The deep learning methods
show overall better results in terms of specificity. However, for small training
set sizes (< 60), the LSSM model shows improved generalization abilities. For
large training set sizes, the generalization abilities of the methods are roughly
the same. While the deep learning methods seem to have similar generalization
abilities, the DAE and GAN models achieve the best specificity.

Furthermore, for smaller training set sizes, VAEs and AEs are not able to
reconstruct all labels, especially small labels like the clavicles. Thus, the percent-
age of images missing one or more labels is fairly high. This problem does not
appear for the DAE model. However, the DAE seems to require larger training
datasets to generate a proper template and consequently achieve a competitive
generalization performance (see Fig. 3).

Latent Space: The latent space of the methods presented here is crucial to
their representation ability. The latent space size of the traditional methods lies
in the ranges [3,14] (SSM) and [4,55] (LSSM) depending on the training set
size. Compared to the deep learning methods with a fixed latent space of size
512, the traditional methods have fairly compact latent spaces contributing to
their interpretability. To further investigate the structure of the latent spaces, we
linearly interpolate between the latent vectors of two randomly chosen images
and project the interpolated vectors back to image space. In Fig. 4, examples for
AE and DAE show that smooth interpolations are possible. However, AEs tend
to generate artifacts and implausible shapes for smaller training sets. This is
avoided in DAEs due to applying smooth deformations to a generated template.
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Fig. 2. Generalization and specificity of the models for varying training set sizes (lower
values are better). The bars indicate the percentage of images with missing labels.
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Typically, a normal distribution is assumed for the latent space of the models
when sampling new shapes. To verify this assumption, we apply a component-
wise Shapiro-Wilk normality test on the latent encodings of the training and
test data and calculate the percentage of non-normally distributed components
(Fig. 3). Due to the explicit normalization of the latent spaces of the VAE and
DAE, they have a small percentage of non-normally distributed components
(~ 10% — 15%). This value increases up to 40% for PCA and LPCA due to their
linear nature, accounting for their worse specificity.

A further important property is that, in contrast to SSMs, neural networks
do not guarantee that a reconstructed image is mapped to the same latent vector
as the original image. We, therefore, calculate the distance between the encoding
of the input image and the encoding of the reconstructed image averaged over
all training data. To establish a consequent scheme, a Mahalanobis distance was
used for all methods. As baseline (BL), we approximate the mean pairwise dis-
tance of the latent encodings. The values obtained are: VAE 0.01 (BL 0.41); AE
11 (BL 26.7); GAN 11 (BL 21.8); DAE 0.02 (BL 0.6). Those distances indicate
an ambiguity and poor interpretability of the latent space, that is not present
for the classical shape models.

4 Discussion and Conclusion

In this work, we compared the shape modelling abilities of two classical and four
deep learning methods. In terms of generalization, the classical LPCA method
is more robust for small training set sizes, whereas for large training set sizes,
it is on par with the deep learning methods. Most deep learning methods fail
to generate small structures when trained on small datasets, while deformable
autoencoders cope with this problem, yet they require a considerable amount
of training data to reach the generalization ability of the other approaches. In
terms of specificity, the deep learning methods show significantly better results.
The latent spaces of SSMs are much more compact and intuitive, however, their
linear nature yields non-normally distributed latent spaces explaining their poor
specificity. An interpolation experiment visualizes the smoothness of the latent
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Fig.3. Left: The DAE learned templates with a different amount of training images.
Right: Percent of non-normally distributed components of the latent vectors of all
models determined by a Shapiro-Wilk test.
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Fig. 4. Projected latent space interpolation between two shapes for different methods.

spaces and shows the strengths of DAEs compared to AEs. Still, a rather large
drawback of the deep learning methods is the ambiguity of their latent space.
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