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Abstract. Vertebral corner points are frequently used landmarks for a
vast variety of orthopedic and trauma surgical applications. Algorithmic
approaches that are designed to automatically detect them on 2D radio-
graphs have to cope with varying image contrast, high noise levels, and
superimposed soft tissue. To enforce an anatomically correct landmark
configuration in presence of these limitations, this study investigates a
shape constraint technique based on data-driven encodings of the spine
geometry. A contractive PointNet autoencoder is used to map numerical
landmark coordinate representations onto a low-dimensional shape man-
ifold. A distance norm between prediction and ground truth encodings
then serves as an additional loss term during optimization. The method
is compared and evaluated on the SpineWeb16 dataset. Small improve-
ments can be observed, recommending further analysis of the encoding
design and composite cost function.

1 Introduction

Anatomical landmark localization is an important prerequisite in medical im-
age processing. It mostly serves as a semantic prior for subsequent tasks which
operate on single-point information and their spatial relationships [1,2]. Tradi-
tionally, strategies to assess such a localization task either involve independent
detection of a single landmark or incorporate information about relative posi-
tioning, spatial constraints, a priori knowledge, and characteristics of the local
feature vicinity [2,3]. In contrast to natural images, this additional information
often presents itself as a natural choice to alleviate image-quality based ambigu-
ities. This is due to anatomical landmarks following a rather rigid configuration
constrained by the bio-mechanical range of motion of the human body.

A typical example of such a configuration can be observed for the localiza-
tion of vertebral corner points on antero-posterior spine radiographs. On the
micro level, the vertebrae within one spinal region are very similar to each other
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and describe a convex quadrilateral by their corner vertices. On the macro level,
the vertical progression of all vertebrae on the X-ray image can be described
by a plane curve. In the case of healthy patients, this curve approximates a
straight line, and in cases of more severe scoliosis, it is more bent. If we want to
translate these anatomical constraints for automatic localization methods using
Deep Learning, we can distinguish between two basic approaches: (1) Explicit
Constraints using domain knowledge, i.e. enforcing adjacency constraints or ge-
ometric rules [4], and (2) Implicit Constraints using a data-driven extraction of
statistics about plausible and aberrant configurations [3,5].

While using an explicit constraints scheme is an attractive approach, it is
limited in its ability to generalize well to unseen data and to data that does
not match the underlying geometric model. In contrast, a data-driven approach
in theory can capture these variations, but presumes a sufficiently large train-
ing data corpus to do so. However, depending on the specific methodology such
implicit constraints might require additional topological modifications to the
learning model’s architecture. To circumvent this additional computational ef-
fort during inference, [5] proposed a lightweight shape-aware method which they
evaluated for segmentation and super-resolution tasks. The latent representation
of an autoencoder is used to map both the ground truth as well as the neural
network predictions onto a low-dimensional manifold. During optimization, the
distance between both encodings serves as additional constraint to the cost func-
tion to pull back aberrant predictions onto anatomically accurate solutions.

Based on this idea, this study investigates an extension of this method for a
joint coordinate representation of vertebral corner points. After estimating the
spatial position for each of the 68 corner points using 2D heatmaps, normalized
numerical coordinates are extracted using a differentiable spatial-to-numerical
transform (DSNT) [6]. A shape representation of this coordinate set is then
extracted as the latent encoding of a PointNet-Autoencoder and compared to the
encoded shape of the corresponding ground truth. The influence of the proposed
constraint is evaluated on the SpineWeb16 dataset [3].

2 Materials and methods

2.1 Geometric constraint via latent shape encoding

A common way to represent data as a set of discriminative and abstract features
is the use of autoencoders. An autoencoder can learn to map the data features to
a low-dimensional manifold in an unsupervised fashion by encoding and decoding
a latent (vector) representation h(·) and measuring the quality of the input
reconstruction. If we consider a set of representative landmark configurations of
the vertebral corner points y, such an autoencoder optimizes an abstraction of
possible and anatomically correct spine shapes from which it can reconstruct
all individual corner points. Consequently, if the distance between two latent
vectors of a ground truth sample h (yi) and a test sample h (ỹi) is large, it
can be assumed that the test sample describes a shape that is not suitable for
decoding and anatomically aberrant (Fig. 1).
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Fig. 1. Illustration of a low-dimensional shape manifold based on ground truth y and
the learned mapping function h(·).

This idea of a latent distance measure naturally translates to an additional
loss term within the cost function of an optimization problem [5]. Given the
cost function for some optimization task Lopt, a distance norm d (here L2-
norm) on the latent vectors, and a weighting term λ, this can be described
as Ltotal = Lopt + λ · d (h (y)), h (ỹ)) .

2.2 Architecture design variants

A popular way to estimate the position of 2D landmarks is to encode their
spatial likelihood as heatmaps. This is achieved by placing a 2D Gaussian dis-
tribution with standard deviation σ and compact support ±3σ on the landmark
coordinates. The heatmaps are then estimated with a Fully-Convolutional Neural
Network (FCN) and explicitly compared to the ground truth via image-to-image
matching using a mean-squared error cost function (Fig. 2-A) [1,7]. If we con-
sider a computationally demanding task such as the prediction of a large set
of corner points, the integration of the introduced shape constraint necessitates
a comparably large autoencoder to encode all predicted heatmaps. To reduce
this computational footprint, we employ a spatial-to-numerical transform [6] to
map the heatmaps to normalized numerical coordinates. In contrast to a spa-
tial argmax operation which is used to obtain the maximum response in case of
heatmap matching, this transform is completely differentiable. This means that a
cost functions can directly operate on the numerical coordinates while implicitly
optimizing the heatmaps. Besides, using a numerical coordinate representation
as input and target for the autoencoder allows for a lightweight autoencoder
architecture (Fig. 2-B,C). To be able to find meaningful shape representations
also in case of noisy label data, we propose to use a contractive autoencoder
topology inspired by PointNet [8]. Given a landmark configuration in the form
of a (N, 2) tensor with N marking the number of landmarks, the input is first
transformed to (N, 1) using a number of convolutional blocks before a symmetry
function is applied. Besides performing the final encoding step, this symmetry
function (here max-pooling) makes the autoencoder invariant to the order of
input landmarks. We assume this characteristic to aid in learning a global shape
context and implicit geometric adjacency relations.
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Fig. 2. Visualization of the model variants that are compared for the task of verte-
bral corner point detection. (A) Explicit heatmap prediction with subsequent spa-
tial argmax. (B) Implicit heatmap prediction with spatial-to-numerical transform
DSNT [6]. (C) Additional shape constraint penalizing the latent vector distance.

2.3 Data and experiment protocol

The comparison of the architecture variants is performed on the SpineWeb16
dataset which consists of 609 spinal antero-posterior radiographs [3] with la-
bels for 12 thoracic and 5 lumbar vertebrae, totaling 68 vertebral corner points.
An initial semi-automatic screening of the annotation data revealed point and
vertebrae permutations, shifting of upper and lower plates, as well as clinically
implausible corners in areas of low contrast. A subset of 520 suitable images
was selected after automatic and manual corrections of the annotation mate-
rial1. For all variants, we devised a 5(+1)-fold cross-validation scheme. The extra
sixth fold was selected for an initial optimization of the shape constraint weight
λ ∈ [0.001, 0.003, 0.006, 0.010, ..., 1.000] and was used as additional training data
in the subsequent cross-validation. As a main model for heatmap prediction we
trained a single Hourglass module [7] with a feature root of 256 and additional
instance normalization layers [1]. For the shape-constrained variant (C), a Point-
Net autoencoder was pre-trained for the corresponding fold configuration and
included via an additional cost term with optimized weighting factor λ = 0.003
(Subsec. 2.1). For every architecture variant, the images were down-sampled and
zero-padded to a common spatial resolution of [h:512 × w:192] px. Every image
was processed with a homomorphic filtering operation to increase the image
contrast in low-intensity areas and min-max normalized to the interval of [0, 1].
During training, an online augmentations scheme with randomized Gaussian
blurring, contrast scaling, rotation, translation, scaling, and slight axis-aligned
shrinking was applied. Training was performed for 250 epochs and the best model
was selected based on the performance on the validation set.

1 Curated annotations are available at doi:10.5281/zenodo.4413665.
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Table 1. Cross-validation results for the three architecture variants ((A),(B),(C)) and
autoencoder reconstruction (*). The average and max scores are reported across the five
folds and are based on the individual mean/max of the Euclidean distance (ED) over all
samples within the respective test fold. The reported scores are scaled w.r.t. the original
image size and normalized to a reference spatial resolution of [h:1000 × w:1000] px.

Architecture variant Average ED (px) Max ED (px)

(A) Heatmap matching 23.23 ± 1.47 92.73

(B) Num. regression 21.67 ± 1.48 104.03

(C) Num. regression + Shape constraint 21.25 ± 1.24 84.55

(*) Autoencoder reconstruction 45.57 ± 4.84 121.20

Fig. 3. Example predictions of a successful shape constraint (a) and a failure case (b).
(*) marks the reconstruction obtained by the PointNet autoencoder. Red and blue
coloring denotes the thoracic and lumbar spinal section respectively.

(a) (b)

3 Results

As presented in Tab. 1, small performance gains can be observed when using
a numerical coordinate representation (B) or shape constraint variant (C). The
magnitude of the improvement however does suggest the benefits to not be sig-
nificant. When analyzing the qualitative results, the shape constraint yields im-
provements for a subset of images with overall good image contrast (Fig. 3).
However, in case of more severe contrast differences and obscured image parts
due to superimposed soft tissue, neither the DSNT variant nor the shape con-
straint approach benefit the landmark predictions. For such image characteristics
in general, no model variant yields anatomically accurate landmark configura-
tions. Interestingly, the autoencoder reconstruction frequently estimates much
smoother landmark configurations at the cost of spatial precision.

4 Discussion

The analysis shows that while the proposed shape constraint on average benefits
the spinal shape, no consistent improvements w.r.t. the positional quality of the
vertebral corner points can be achieved, especially in the case of low-quality im-
ages. Based on the findings of the qualitative analysis, several potential problem
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factors can be identified. Although the quality of the autoencoder reconstruc-
tion indicates that a mapping function onto a meaningful shape manifold can be
learned, the abstraction towards a probabilistic mean shape could be too strong
to actually enforce geometrically meaningful landmarks. This assumption is sup-
ported by a small optimal weighting factor λ and a general pull back to a rectified
spine shape (Fig. 3). Such behavior also relates to the observations by [3] who
showcase that standard convolutional features do not warrant sufficiently accu-
rate landmark positions. Also, a linear composition of the cost function might
cause a suboptimal optimization landscape due to conflicting gradients, which
could be solved by either gradient manipulation [9] or an adaptive weighting
scheme [1]. And lastly, adaptive pre-processing based on region-specific image
statistics could help to alleviate image quality based ambiguities which often oc-
cur in the thoracic region. With these limitations in mind, we seek to extend our
evaluation and combine a data-driven approach with explicit shape constraints.

Acknowledgement. The authors gratefully acknowledge funding of the Erlangen
Graduate School in Advanced Optical Technologies (SAOT) by the Bavarian
State Ministry for Science and Art.

Disclaimer. The methods and information presented here are based on research
and are not commercially available.

References

1. Kordon F, Fischer P, Privalov M, et al. Multi-task localization and segmentation
for X-Ray guided planning in knee surgery. In: Shen D, Liu T, Peters TM, et al.,
editors. Proc MICCAI. Springer; 2019. p. 622–630.
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