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Problem and Goal

Edge detection in computed tomography (CT) scans is a challenging task
as the underlying image reconstruction problem is ill-posed. Besides
noise amplification, classical reconstruction algorithms may generate ad-
ditional subsampling artifacts, which leads to unreliable edge maps.

We present two methods that allow for a stable reconstruction of edges
directly from CT data. In particular, we show that iterative sparse regu-
larization is able to reconstruct a gradient image from the data reliably,
which enables the subsequent application of the Canny algorithm.

Mathematical model

The mathematical model of CT is given by the Radon transform of a func-
tion f : R2→ R, which is defined as

Rf (ϕ, s) :=
∫
R
f (sθ(ϕ) + tθ⊥(ϕ)) dt,

where θ ∈ S1 is a unit vector depending on an angle ϕ ∈ [0, π), and s ∈ R
is the singed distance from the origin. The value Rf (ϕ, s) represents one
x-ray measurement along the line L(ϕ, s) =

{
sθ(ϕ)) + tθ⊥(ϕ) : t ∈ R

}
.

The reconstruction problem is given by

Rfε = g,

with fε := f ∗ gε, where

gε(x) :=
1

2πε2
exp

(
−‖x‖

2

2ε2

)
, ε > 0.

Subsequently, we aim to reconstruct the gradient images
∂fε
∂xj

=
∂

∂xj
(f ∗ gε) = f ∗ ∂gε

∂xj
. (1)

where j ∈ {1,2} denotes the gradient in x1 and x2 direction, respectively.

Methods

We propose two methods as reconstruction strategies:

1. FBP-type approach
Let Wε,j be the function of two variables (ϕ, s) which is defined in the
Fourier domain by

Ŵε,j(ϕ, ω) :=
1

4π
· θj(ϕ) · i · ω · |ω| · exp

(
−ε2ω2

2

)
,

where the Fourier transform is applied with respect to the s-variable.
Then (1) is given by

∂fε
∂xj

= B(Rf ∗s Wε,j), (2)

where B is the backprojection operator for the Radon transform.

2. Sparse Regularization
To account for the negative effects of undersampling of CT data, we pro-
pose to use an iterative reconstruction method. We calculate the deriva-
tives (1) approximately via:

f(j)λ,ε = arg min
f
‖Rf− y ∗ Gε,j‖22 + λ ‖f‖1 , (3)

The bold face symbols denote the discretized versions of the correspond-
ing continuous objects. To solve this minimization problem, we used the
well-known ISTA algorithm (cf. [2]).

Results

For simulation, we used real CT data of a lotus root, cf. [1]. To simulate
angular undersampling we downsampled this data to 738 equispaced
samples in the s-variable and 36 evenly distributed angles in [0, π). Dur-
ing experiments, parameters where chosen based on visual inspection of
edge detection results.

Figure 1d clearly shows FBP reconstruction errors due to under sampled
data (Figure 1a). Directly applying gradient methods for edge detection,
would lead to an uninterpretable image.

The middle column shows reconstruction using (2). Clearly method 1
cannot compensate for the undersampling artifacts. On the right, `1-
regularization successfully reduces the number of artifacts and detects
the edges more reliably.

(a) downsampled CT data (b) M1: |∇fε|, ε = 3 (c) M2: |∇fε|, ε = 6, λ = 0.01

(d) FBP reconstruction (e) M1: edge map (Canny) (f) M2 2: edge map (Canny)

Figure 1: Rebinned CT data of a lotus root (cf. [1]) from 36 evenly distributed angles
(a) and FBP reconstruction (d). The images of the gradient magnitude |∇fε| are shown
in (b) and (c), and the corresponding edge detection results using the Canny algorithm
in (e) and (f).

In other experiments we observed that method 2 outperforms the
method 1 whenever the CT data was not sampled properly. For dense
angular sampling, we found that both methods produce similar edge de-
tection results.

Summary and Outlook

The proposed methods produce promising results. As expected, method
1 performed very well for fully sampled data, but struggled in the incom-
plete data case. For heavily undersampled Radon data, method 2 still
was able to produce a gradient image reliably.

Further research may be conducted in terms of optimal parameter se-
lection as well as edge detection methods involving the Laplacian-of-
Gaussian-type algorithms.
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